Search the site...

  phil mora
  • The Global Nomad
  • About
  • Portfolio
  • Contact and Book
  • The Training Log
  • The Global Nomad
  • About
  • Portfolio
  • Contact and Book
  • The Training Log


​The Global Nomad
(JAN-APR 22 = currently in the Philadelphia area.)

about

How Apple Could Boost Speeds 20 Times on the Next iPhone

10/7/2013

0 Comments

 
Picture
Picture
Picture
Picture
Forget about fingerprint sensor. The real innovations in iPhone are more about lightfield photography, slowmotion video, multi-dimensional sensing and multipath networking. 

The new iPhone breaks ground by seamlessly sharing Wi-Fi and 4G for Siri. Further tweaks could boost bandwidth 20-fold in some cases. Multipath TCP is not there yet, but commercialization of the underlying network coding technology is already possible.

-Philippe

[Thank you MIT Technology Review | By David Talbot 09.30.13]
By one estimate, global mobile data traffic will increase 13-fold between 2012 and 2017, requiring new solutions for adding capacity.

A wireless networking technology found in Apple’s new operating system could—if tweaked—provide a 10- to 20-fold bandwidth increase in some situations, like on a moving train or in a busy urban environment, new research suggests.

The technology is called multipath TCP. It allows you to use multiple wireless networks—such as 4G and Wi-Fi—at the same time. But Apple isn’t using it fully, nor is it using an advanced version—one that also encodes the data being transmitted in new ways— recently shown to provide those dramatic potential gains.

The advance, based on work done by a multi-university group led by Muriel Medard, an electrical engineering professor at MIT, is “very compelling” and “shows dramatic improvement in terms of increased data rates, reduced latency, and reduced packet loss,” says Andrea Goldsmith, professor of electrical engineering at Stanford and a leading network researcher and entrepreneur not involved in the work.
Right now, as any smartphone owner knows, a phone or tablet will either use Wi-Fi or 4G or 3G—and never at the same time. So your streaming video may cut out because the network you were using dropped, even though there’s another signal available.

Multipath TCP could change this by divvying up those video bits across two or more networks. “Multipath” refers to using more than one wireless route, and TCP refers to the protocols used by most Internet traffic. Then, to use a simplified explanation—all “odd” packets (units of data that make up an Internet transmission) get sent over Wi-Fi and “even” ones over 4G. Then these “odd” and “even” packets get woven back, zipper-like, on the phone.

But in practice, it’s not that simple. The problems start with the fact that data-transmission takes longer from a cell tower than it does from a Wi-Fi router. Throw satellite streams in and the transmission delays are even longer.

Multipath TCP makes up for this by tweaking transmission speeds. But matters get more complicated if you are moving around, meaning those timings are always changing—and worse still, if some packets drop out. When those things happen, the computation required for multipath processing can get so complex that it actually slows down the overall speeds, says Medard.

And that may be why Apple—in using multipath TCP only for its voice-query engine, Siri—apparently isn’t even using both cellular and Wi-Fi networks at the same time. Rather, it may be using the technology to simply enable Siri to switch back and forth between them without user intervention, so it can avoid having to retransmit your spoken request, a source of delays.

“The rumors I’ve heard is that Apple is using it for Siri just to decrease latency by using whatever network connection is available,” says Jason Cloud, a grad student in Medard’s lab.

Trudy Miller, an Apple spokeswoman, declined to comment on how the technology has been deployed. (Apple has been characteristically secretive about the technology; so one of the first hints that it was using multipath at all came when a Belgian researcher, Olivier Bonaventure, blogged about it earlier this month.) Several groups around the world are working on the technology.

At any rate, there is a technology that helps solve the remaining problems with multipath TCP. It is called “network coding”—an extra tweak atop multipath TCP. Network coding algorithmically combines packets in elegant ways. Then multiple packets can be turned into a single number that’s a function of the ones making it up. “You code within flows for redundancy,” Medard says. “Then you don’t have to be managing between them like crazy.”

It was this version that, when tested by Cloud and colleagues at the Hamilton Institute, part of the National University of Ireland in Maynooth, Ireland, provided up to 10 times better performance on a single network path, by repairing dropped packets on a single connection. This expanded on work Medard did last year (see “A Bandwidth Breakthrough”).

Measurements done at the University of California, Los Angeles, suggested how network coding could turbocharge multipath TCP. In findings presented in June, Medard and several university collaborators measured actual packet losses and other conditions around a Westwood, California, campus from three wireless sources: Wi-Fi transmitters, cellular towers, and Iridium satellites. They concluded the technology could provide a similar benefit when used on multiple paths, with a potential tenfold increase per path.

Demonstrations are planned over the next year. But commercialization of the underlying network coding technology is already possible. Medard says several organizations have licensed the technology from an MIT-Caltech startup called Code-On Technologies. She says she can’t name the companies.

Goldsmith says that while she didn’t know the details of what Apple has done, “it’s great to see Apple move in this direction, as it will inspire more developments in theory and practice.”

While “it is a no-brainer” to move forward with industry adoption of network coding with multipath TCP, implementation will likely have to start with applications where the data can easily be coded and decoded at either end—like, say, on a video application. “It’s very difficult to fundamentally change the network. There are a lot of entrenched players and entrenched technology,” Goldsmith says.

Read More: http://www.technologyreview.com/news/519646/how-apple-could-boost-speeds-20-times-on-the-next-iphone/
0 Comments



Leave a Reply.

    head of product in colorado. travel 🚀 work 🌵 food 🍔 rocky mountains, tech and dogs 🐾

    Picture

    Categories

    All
    Change Agents
    Experiences
    Fitness
    Hacking Work
    Technology

    Archives

    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    January 2016
    October 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013
    August 2013
    July 2013
    June 2013
    May 2013
    April 2013
    February 2013
    January 2013
    December 2012
    August 2012
    July 2012
    June 2012
    May 2012
    April 2012
    March 2012
    January 2012
    December 2011
    October 2011
    September 2011
    August 2011
    June 2011
    May 2011
    April 2011
    March 2011
    February 2011
    January 2011
    December 2010
    November 2010
    October 2010
    September 2010
    August 2010
    July 2010

    RSS Feed

Phil Mora
​San Francisco .Rennes .Fort Collins .Philadelphia
Phone: (415) 315-9787 . Twitter
@philippemora .  braintrust | polywork | behance

Copyright © 1999-2022 Marshall Tucker by Bold (MT2B) All Rights Reserved