Search the site...

  phil mora
  • The Big Picture
  • Butchsonic Forge
  • About
  • The Big Picture
  • Butchsonic Forge
  • About


The Big Picture
​
San-Francisco. Philadelphia. Paris. Denver. 

About

How Twitter Can Cash In with New Technology

9/20/2013

0 Comments

 
Picture
Picture
Picture
Picture
Can technology help twitter become profitable ? As Twitter plans to sell shares to the public, its success will depend in part on how much better it can get at deciphering tweets. 

Current ad revenue at Twitter is around $260 million, however the correct metric is the cost per user, something that will be disclosed in the SEC S-1 that will have to emerge from secrecy very soon. For instance, out of 240 million users, how many are fake or inactive will be disclosed. It is totally possible that user acquisition costs, as with any other old-school ad-based social media 1.0, are enormous and twitter is effectively not profitable. Going public will require to innovate and make sense of those 50 billion tweets per year. 

Solving that technological puzzle would help Twitter get better at selling the right promoted messages at the right times, and it could possibly lead to new revenue-producing services.

-Philippe.

[Thank you MIT Technology Review | David Talbot 09.18.13]
Now that Twitter plans to go public, its future could depend on its ability to target advertising more finely.

Twitter began selling promoted tweets in 2010, but it has always faced challenges in knowing which of those ads should be delivered to which Twitter accounts. Most Twitter users don’t give up their locations, and many don’t reveal their identities in their profiles. And mining tweets themselves for insights is hard because the language is not only short but filled with slang and abbreviations.

Now, as Twitter plans to sell shares to the public, its success will depend in part on how much better it can get at deciphering tweets. Solving that technological puzzle would help Twitter get better at selling the right promoted messages at the right times, and it could possibly lead to new revenue-producing services.
Twitter hasn’t done badly so far; the analyst firm eMarketer predicts ad revenue will double this year, to $583 million. But the company is still trying to get smarter about analyzing tweets. It has bought startups such as Bluefin Labs, which can tell which TV show—and even which precise airing of a TV advertisement—people have tweeted about (see “A Social-Media Decoder”). It has also invested in companies such as Trendly, a Web analytics provider that reveals how promoted tweets are being read and shared. And just last week, Twitter blogged that it is continually running experiments on how to do better at tasks such as suggesting relevant content.

For its next steps, Twitter might consider tapping the latest academic research. Here are some areas it could concentrate on.

Location

Fewer than 1 percent of tweets are “geotagged,” or voluntarily labeled by users with location coördinates. Much of the time, Twitter can use your computer’s IP address and get a good approximation. But that’s not the same as knowing where you are. In mobile computing, IP addresses are reassigned frequently—and some people take steps to obscure their true IP address.

But recent research has shown that the locations of friends—defined as people you follow on Twitter who are also following you—can be used to infer your location to within 10 kilometers half the time. It turns out that many Twitter friends live near one another, says David Jurgens, a computer scientist at Sapienza University of Rome, who did this research while at HRL Laboratories in Malibu, California. If some of your friends have made geotagged tweets or revealed their location in a Twitter profile, Jurgens says, that may be enough to show where you probably are.

Demographics

Natural-language processing gets better all the time. Hundreds of markers—word choices, abbreviations, slang terms, and letter and punctuation combinations—signify ever-finer strata of demographic groups and their interests.

Some things, like political leanings, are often not hard to figure out from the right hashtags or from sentiments associated with terms like “Obamacare,” says Dan Weld, a computer scientist at the University of Washington.

Meanwhile, Derek Ruths, a computer scientist who explores natural-language processing at McGill University, has recently shown that linguistic cues can identify U.S. Twitter users’ political orientation with 70 to 90 percent accuracy and can even identify their age (within five years) with 80 percent accuracy. For example, words that most strongly suggest someone is between the ages of 25 and 30 include “for,” “on”, “photo,” “I’m,” and “just,” he says. Generally, these users have a somewhat stronger allegiance to grammar than younger, slang-loving users, he says. And as with location, the profiles of the people they follow provide clues to their demographics.

But even if Twitter can make pretty good guesses about 90 percent of its users, “even missing 10 percent means you miss a lot of people,” says Ruths. “If I were Twitter, I’d want to close that 10 percent gap. And you’d want to find out real details like who someone’s mother is. If it’s Mom’s birthday, you want to tell those people how to order flowers. Twitter can’t do that—yet.”

Making Sense of Breaking News

One of the major uses of Twitter is to report on breaking news events (see “Can Twitter Make Money?”). With so many people tweeting little nuggets of news and other current information, tools have even been built to tease out play-by-play sports action (see “Researchers Turn Twitter into Real-Time Sports Commentator”).

But in major emergencies—like a terrorist attack or earthquake—so many tweets are generated that making sense of them in real time is tricky. Twitter might highlight the most meaningful ones, to cement itself as a must-visit service, but how?

A group at the University of Colorado, Boulder, is using natural-language processing to highlight the most relevant tweets in a disaster. Recent research shows significant progress in differentiating tweets about personal reflections, emotional expressions, or prayers from ones containing hard information about where a fire is burning or whether medical supplies are needed.

In one project, the group was able to identify valuable, news-containing tweets with 80 percent accuracy; these tend to contain language that is formal, objective, and lacking in personal pronouns. Last year they extended that work to classify the important tweets by categories such as damage reports, requests for aid, and advice. “We are trying to figure out which tweets have the most useful information to the people on the ground,” says Martha Palmer, a professor of linguistics and computer science at Boulder.

Read More: http://www.technologyreview.com/news/519321/how-twitter-can-cash-in-with-new-technology/
0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    AI-Native Product Builder in Colorado. travel 🚀 work 🌵 weights 🍔 music 💪🏻 rocky mountains, tech and dogs 🐾

    Picture

    Categories

    All
    Artificial Intelligence
    Change Agents
    Experiences
    Fitness
    Hacking Work
    Projects
    Technology
    Thoughts

    Archives

    July 2025
    June 2025
    May 2025
    April 2025
    March 2025
    February 2025
    July 2024
    June 2024
    December 2022
    November 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    January 2016
    October 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013
    August 2013
    July 2013
    June 2013
    May 2013
    April 2013
    February 2013
    January 2013
    December 2012
    August 2012
    July 2012
    June 2012
    May 2012
    April 2012
    March 2012
    January 2012
    December 2011
    October 2011
    September 2011
    August 2011
    June 2011
    May 2011
    April 2011
    March 2011
    February 2011
    January 2011
    December 2010
    November 2010
    October 2010
    September 2010
    August 2010
    July 2010

Phil Mora
​San Francisco .Rennes .Fort Collins .Philadelphia
Phone: (408) 242-9222 . [email protected] . Discord | X | Linked In


Copyright © 1999-2025 Topp Studio All Rights Reserved